Description
(Matrizen und Determinantenrechnung, lineare Gleichungssysteme), Methode der kleinsten Quadrate N etzplantechnik Graphentheorie M arktjorschung Mengenlehre, Wahrscheinlichkeitsrechnung, Spieltheorie, lineare Algebra Operations Research (Unternehmensforschung) Lineare und nichtlineare Optimierung, Wahrscheinlichkeitsrechnung, Differential und Integralrechnung, Kombinatorik, Mengenlehre, lineare Algebra Kybernetik, elektronische Datenverarbeitung Mengenlehre, mathematische Logik, lineare Algebra Die moderne Wirtschaftstheorie und ihre Anwendung in der volkswirtschaftlichen 1. Einfhrung in die Logik.- 1.1. Aussagen, Variable, Aussageformen.- 1.2. Aussagenverbindungen.- 1.3. Identitten.- 1.3.1. Logisch quivalente Aussagenverbindungen.- 1.3.2. Identitten in Form einer Implikation.- 1.3.3. Schluregeln.- 1.4. Elemente der Schaltalgebra.- 1.5. Quantifizierung von Aussageformen.- Aufgaben.- 2. Grundbegriffe der Mengenlehre.- 2.1. Vorbemerkungen.- 2.2. Mengen und Teilmengen.- 2.3. Mengenoperationen.- 2.4. Produktmengen, Relationen.- 2.4.1. Produktmengen, Relationsbegriff.- 2.4.2. Ordnungsrelationen.- 2.4.3. quivalenzrelationen, Klasseneinteilungen.- 2.5. Abbildungen, Funktionen, Operationen.- 2.6. Gleichmchtigkeit von Mengen, Endlichkeit.- Aufgaben.- 3. Zahlenbereiche.- 3.1. Natrliche Zahlen.- 3.1.1. Peanosches Axiomensystem.- 3.1.2. Vollstndige Induktion.- 3.2. Ganze Zahlen.- 3.3. Rationale Zahlen.- 3.4. Reelle Zahlen.- 3.4.1. Begriff und Operationen.- 3.4.2. Ungleichungen und absoluter Betrag.- 3.4.3. Darstellung reeller Zahlen (Zahlensysteme).- 3.5. Komplexe Zahlen.- 3.5.1. Begriff der komplexen Zahl.- 3.5.2. Rechnen mit komplexen Zahlen.- 3.5.3. Polarkoordinaten, trigonometrische Darstellung.- Aufgaben.- 4. Kombinatorik.- 4.1. Summenzeichen.- 4.2. Produktzeichen.- 4.3. Aufgaben der Kombinatorik.- 4.4. Permutationen.- 4.4.1. Permutationen ohne Wiederholung.- 4.4.2. Permutationen mit Wiederholung.- 4.5. Variationen.- 4.5.1. Variationen ohne Wiederholung.- 4.5.2. Variationen mit Wiederholung.- 4.6. Kombinationen.- 4.6.1. Kombinationen ohne Wiederholung.- 4.6.2. Kombinationen mit Wiederholung.- 4.7. Binomial- und Polynomialsatz.- 4.7.1. Eigenschaften des Eulerschen Symbols $$left( {begin{array}{*{20}{c}} n k end{array}} right) $$.- 4.7.2. Binomialsatz.- 4.7.3. Polynomialsatz.- Aufgaben.- 5. Lineare Algebra.- 5.1. Matrixbegriff und spezielle Matrizen.- 5.2. Matrizenrelationen.- 5.2.1. Gleichheit von Matrizen.- 5.2.2. Ungleichheit von Matrizen.- 5.3. Matrizenoperationen.- 5.3.1. Transponieren.- 5.3.2. Matrizenaddition.- 5.3.3. Matrizensubtraktion.- 5.3.4. Multiplikation einer Matrix mit einem Skalar.- 5.3.5. Multiplikation eines Zeilenvektors mit einem Spaltenvektor (Skalarprodukt).- 5.3.6. Multiplikation von Matrizen.- 5.4. Linearkombination von Vektoren.- 5.5. Lineare Abhngigkeit und lineare Unabhngigkeit von Vektoren.- 5.6. Elementare Basistransformation.- 5.7. Rang einer Matrix.- 5.8. Konvexe Mengen.- 5.9. Lineare Gleichungssysteme.- 5.9.1. Begriff des linearen Gleichungssystems.- 5.9.2. Lsbarkeit linearer Gleichungssysteme.- 5.9.3. Lineare Gleichungssysteme mit genau einer Lsung.- 5.9.4. Lineare Gleichungssysteme mit unendlich vielen Lsungen.- 5.10. Matrizeninversion.- 5.11. Matrizengleichungen.- 5.12. Lineare Ungleichungssysteme.- 5.12.1. Begriff des linearen Ungleichungssystems.- 5.12.2. Normales Ungleichungssystem mit beschrnkter Lsungsmenge.- 5.13. Determinanten.- 5.14. Quadratische Formen und Definitheit.- Aufgaben.- 6. Lineare Optimierung.- 6.1. Einleitung.- 6.2. Lineare Optimierungsmodelle und die Normalform der linearen Optimierungsaufgabe.- 6.2.1. Lineare Optimierungsmodelle.- 6.2.2. Normalform der linearen Optimierungsaufgabe.- 6.3. Graphische Lsung von linearen Optimierungsaufgaben in zwei Variablen.- 6.4. Grundlegende Eigenschaften linearer Optimierungsaufgaben.- 6.5. Simplexmethode.- 6.5.1. Simplexalgorithmus.- 6.5.2. Zur numerischen Durchfhrung des Simplexalgorithmus.- 6.5.3. Erzeugung einer ersten zulssigen Basislsung und der zugehrigen kanonischen Form – die Phase I der Simplexmethode.- 6.5.4. Numerische Durchfhrung der zwei Phasen der Simplexmethode.- 6.6. Dualittstheorie der linearen Optimierung.- 6.6.1. Paare dualer linearer Optimierungsaufgaben.- 6.6.2. Eigenschaften von Paaren dualer linearer Optimierungsaufgaben.- 6.6.3. konomische Interpretation eines Paares dualer linearer Optimierungsaufgaben.- 6.7. Dualer Simplexalgorithmus.- 6.7.1. Theoretische Betrachtungen zum dualen Simplexalgorithmus.- 6.7.2. Zur numerischen Durchfhrung des dualen Simplexalgorithmus.- 6.8. Klassische Transportaufgabe.- 6.8.1. Problemstellung und Modellkonstruktion.- 6.8.2. Eigenschaften der klassischen Transportaufgabe und die Erzeugung zulssiger Basislsungen.- 6.8.3. Erzeugung einer optimalen zulssigen Basislsung.- 6.8.4. Zur numerischen Durchfhrung des Lsungsverfahrens fr die klassische Transportaufgabe.- 6.9. Parametrische lineare Optimierung.- 6.9.1. Lineare Abhngigkeit der Bewertungskoeffizienten von einem Parameter.- 6.9.2. Lineare Abhngigkeit des Erfordernisvektors von einem Parameter.- 6.10. Diskrete lineare Optimierung.- 6.10.1. Schnittebenenverfahren von Gomory.- Aufgaben.- 7. Zahlenfolgen und -reihen.- 7.1. Begriff der Zahlenfolge, spezielle Zahlenfolgen.- 7.1.1. Erklrung der Zahlenfolge.- 7.1.2. Arithmetische Zahlenfolgen.- 7.1.3. Differenzenfolgen.- 7.1.4. Geometrische Zahlenfolgen.- 7.1.5. Beschrnkte und monotone Zahlenfolgen.- 7.2. Konvergente Zahlenfolgen.- 7.2.1. Grenzwert von Zahlenfolgen.- 7.2.2. Eigenschaften konvergenter Zahlenfolgen.- 7.2.3. Divergente Zahlenfolgen.- 7.2.4. Konvergenzkriterien.- 7.3. Zahlenreihen.- 7.3.1. Begriff der unendlichen Reihe.- 7.3.2. Summe einer unendlichen Reihe.- 7.3.3. Unendliche geometrische Reihe.- 7.3.4. Konvergenzkriterien.- Aufgaben.- 8. Differentialrechnung fr Funktionen mit einer unabhngigen Variablen.- 8.1. Funktionen mit einer unabhngigen Variablen.- 8.1.1. Eigenschaften und Typen von Funktionen.- 8.1.2. Grenzwerte von Funktionen.- 8.1.3. Stetigkeit.- 8.2. Differenzierbarkeit.- 8.2.1. Differentialquotient.- 8.2.2. Differentiationsregeln.- 8.2.3. Mittelwertsatz.- 8.2.4. Differentiale.- 8.2.5. Ableitungen hherer Ordnung.- 8.3. Satz von Taylor; Taylorsche Reihen.- 8.3.1. Satz von Taylor.- 8.3.2. Taylorsche Reihen.- 8.3.3. Exponential-, Logarithmus- und Potenzfunktion.- 8.4. Anwendungen der Differentialrechnung zur Untersuchung von Funktionen.- 8.4.1. Relative und absolute Extrema.- 8.4.2. Monotonie, Konvexitt, Konkavitt.- 8.5. konomische Anwendungen der Differentialrechnung.- 8.5.1. Optimale Losgre.- 8.5.2. Optimale Nutzungsdauer.- 8.5.3. Optimale Laufzeit von Frdersonden.- 8.5.4. Optimale Ankunftsintensitt von Schiffen.- Aufgaben.- 9. Differentialrechnung fr Funktionen mit mehreren unabhngigen Variablen.- 9.1. Funktionen mit mehreren unabhngigen Variablen.- 9.1.1. Grundbegriffe und geometrische Darstellung.- 9.1.2. Grenzwerte und Stetigkeit.- 9.2. Ableitung und Differential.- 9.2.1. Partielle Ableitungen.- 9.2.2. Vollstndiges Differential.- 9.2.3. Partielle Ableitungen hherer Ordnung.- 9.2.4. Fehlerabschtzungen.- 9.3. Extremwerte.- 9.3.1. Notwendige Bedingungen.- 9.3.2. Hinreichende Bedingungen.- 9.3.3. Extremwerte unter Nebenbedingungen.- 9.3.4. Methode der kleinsten Quadratsumme.- Aufgaben.- 10. Integralrechnung mit einer unabhngigen Variablen.- 10.1. Unbestimmtes Integral.- 10.1.1. Stammfunktion.- 10.1.2. Grundregeln zur Ermittlung unbestimmter Integrale.- 10.1.3. Partialbruchzerlegung rationaler Funktionen.- 10.1.4. Integration rationaler Funktionen.- 10.1.5. Integration einiger spezieller Funktionen.- 10.2. Bestimmtes Integral.- 10.2.1. Flcheninhalt.- 10.2.2. Bestimmtes (Riemannsches) Integral.- 10.2.3. Integrierbarkeit monotoner und stetiger Funktionen.- 10.2.4. Mittelwertstze der Integralrechnung.- 10.2.5. Hauptsatz der Differential- und Integralrechnung.- 10.2.6. Rechnen mit bestimmten Integralen.- 10.3. Anwendungen der Integralrechnung.- 10.4. Uneigentliche Integrale.- 10.4.1. Integrale ber unbeschrnkte Intervalle.- 10.4.2. Integrale von nicht beschrnkten Funktionen.- Aufgaben.- 11. Lineare Differential- und Differenzengleichungen.- 11.1. Lineare Differentialgleichungen.- 11.1.1. Allgemeine Bemerkungen und Definitionen.- 11.1.2. Differentialgleichung 1. Ordnung.- 11.1.3. Trennung der Variablen.- 11.1.4. Lineare Differentialgleichung 1. Ordnung.- 11.1.5. Stze ber die Lsungen der homogenen linearen Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten.- 11.1.6. Homogene lineare Differentialgleichung 2. Ordnung.- 11.1.7. Homogene lineare Differentialgleichung n-ter Ordnung.- 11.1.8. Allgemeine Lsung der inhomogenen linearen Differentialgleichung.- 11.1.9. Methode der Variation der Konstanten fr die inhomogene lineare Differentialgleichung 2. Ordnung.- 11.1.10. Variation der Konstanten fr die inhomogene lineare Differentialgleichung n-ter Ordnung.- 11.1.11. Spezielle Lsungsanstze zur Bestimmung einer partikulren Lsung der inhomogenen linearen Differentialgleichung.- 11.1.12. Systeme von linearen Differentialgleichungen 1. Ordnung.- 11.1.13. Homogene Systeme von linearen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten.- 11.1.14. Inhomogene Systeme von linearen Differentialgleichungen 1. Ordnung mit konstanten Koeffizienten.- 11.1.15. Eliminationsverfahren zur Lsung von linearen Differentialgleichungssystemen.- 11.1.16. konomische Anwendungen von Differentialgleichungen.- 11.2. Differenzenrechnung.- 11.2.1. Funktion und ihre Differenzen.- 11.2.2. Eigenschaften des Differenzenoperators.- 11.3. Differenzengleichungen.- 11.3.1. Definitionen.- 11.3.2. Existenz- und Eindeutigkeitssatz fr lineare Differenzengleichungen.- 11.3.3. Allgemeine Stze ber lineare Differenzengleichungen mit konstanten Koeffizienten.- 11.3.4. Lineare Differenzengleichung 1. Ordnung mit konstanten Koeffizienten.- 11.3.5. Homogene lineare Differenzengleichung 2. Ordnung mit konstanten Koeffizienten.- 11.3.6. Homogene lineare Differenzengleichung n-ter Ordnung mit konstanten Koeffizienten.- 11.3.7. Inhomogene lineare Differenzengleichung n-ter Ordnung mit konstanten Koeffizienten.- 11.3.8. Systeme linearer Differenzengleichungen 1. Ordnung mit konstanten Koeffizienten.- 11.4. Zusammenhang zwischen Differenzen- und Differentialgleichungen.- Aufgaben.- 12. Nichtlineare Optimierung.- 2.1. Problemstellungen der nichtlinearen Optimierung.- 12.1.1. Allgemeine Aufgabe der nichtlinearen Optimierung.- 12.1.2. Graphische Lsung von nichtlinearen Optimierungsaufgaben in zwei Variablen.- 12.1.3. Konvexe Funktionen.- 12.1.4. Globale und relative Extrema.- 12.1.5. Besonderheiten der nichtlinearen Optimierung.- 12.1.6. Aufgaben der konvexen Optimierung.- 12.1.7. Hyperbolische Optimierung.- 12.1.8. Quadratische Optimierung.- 12.2. Approximationsmethoden fr Probleme mit trennbaren Funktionen.- 12.3. Hyperbolische Optimierung.- 12.4. Satz von Kuhn-Tucker.- 12.4.1. Satz von Kuhn-Tucker fr konvexe Probleme.- 12.4.2. Bedingungen von Kuhn-Tucker fr quadratische Probleme.- 12.5. Quadratische Optimierung.- 12.5.1. Allgemeine Aussagen ber quadratische Probleme.- 12.5.2. Dualitt.- 12.6. Gradientenverfahren.- 12.6.1. Allgemeines Vorgehen der Gradientenverfahren.- 12.6.2. Quadratischer Fall.- Aufgaben.- 13. Dynamische Optimierung.- 13.1. Stellung der dynamischen Optimierung in der Optimierungstheorie.- 13.2. Mehrstufige Entscheidungsprozesse.- 13.2.1. Dynamische Systeme und Mehrstufenprozesse.- 13.2.2. Mehrstufenentscheidungsprozesse.- 13.2.3. Separable Mehrstufenentscheidungsprozesse.- 13.2.4. Zusammenfassende Problemstellung.- 13.3. Lsungsverfahren.- 13.3.1. Optimalittsprinzip.- 13.3.2. Funktionalgleichungen.- 13.3.3. Lsung der Funktionalgleichungen.- 13.3.4. Fragen der praktischen Auswertung der Funktionalgleichungen.- 13.3.5. Umkehrung der Optimierungsrichtung.- 13.4. Ein Verteilungsproblem.- 13.5. Wertung des Verfahrens und Ausblick.- Aufgaben.- 14. Graphentheorie.- 14.1. Grundlagen.- 14.1.1. Ungerichtete Graphen.- 14.1.2. Gerichtete Graphen.- 14.1.3. Durchlaufungen.- 14.1.4. Graphen und Matrizen.- 14.1.5. Bume und Gerste.- 14.1.6. Planare Graphen.- 14.2. Anwendungen der Graphentheorie in der konomie.- 14.2.1. Krzeste Wege.- 14.2.2. Einiges ber Netzplantechnik.- 14.2.3. Spannungen auf Graphen.- 14.2.4. Strme auf Graphen.- Aufgaben.- 15. Wahrscheinlichkeitsrechnung.- 15.1. Einfhrung in die Wahrscheinlichkeitsrechnung.- 15.1.1. Gegenstand der Wahrscheinlichkeitsrechnung.- 15.1.2. Ereignisse und deren Wahrscheinlichkeit.- 15.1.3. Klassische Definition der Wahrscheinlichkeit.- 15.1.4. Statistische Definition der Wahrscheinlichkeit.- 15.1.5. Axiomatische Definition der Wahrscheinlichkeit.- 15.1.6. Rechnen mit Wahrscheinlichkeiten.- 15.1.7. Unabhngigkeit und Abhngigkeit von Ereignissen.- 15.1.8. Zufallsgren.- 15.2. Diskrete Verteilungen.- 15.2.1. Verteilungsgesetz einer diskreten Zufallsgre.- 15.2.2. Erwartungswert und Varianz einer diskreten Zufallsgre.- 15.2.3. Weitere Parameter einer diskreten Zufallsgre.- 15.2.4. Erzeugende Funktion einer diskreten Zufallsgre.- 15.2.5. Mehrdimensionale diskrete Zufallsgren.- 15.3. Spezielle diskrete Verteilungen.- 15.3.1. Binomialverteilung.- 15.3.2. Hypergeometrische Verteilung.- 15.3.3. Geometrische Verteilung.- 15.3.4. Poisson-Verteilung.- 15.3.5. Polynomialverteilung.- 15.4. Stetige Verteilungen.- 15.4.1. Verteilungsgesetz einer stetigen Zufallsgre.- 15.4.2. Parameter einer stetigen Zufallsgre.- 15.4.3. Mehrdimensionale stetige Zufallsgren.- 15.5. Spezielle stetige Verteilungen.- 15.5.1. Gleichmige Verteilung.- 15.5.2. Exponentialverteilung.- 15.5.3. Normalverteilung.- 15.5.4. Zweidimensionale Normalverteilung.- Aufgaben.- Lsungen zu den Aufgaben.- 1. Einfhrung in die Logik.- 2. Grundbegriffe der Mengenlehre.- 3. Zahlenbereiche.- 4. Kombinatorik.- 5. Lineare Algebra.- 6. Lineare Optimierung.- 7. Zahlenfolgen und -reihen.- 8. Differentialrechnung fr Funktionen mit einer unabhngigen Variablen.- 9. Differentialrechnung fr Funktionen mit mehreren unabhngigen Variablen.- 10. Integralrechnung mit einer unabhngigen Variablen.- 11. Lineare Differential- und Differenzengleichungen.- 12. Nichtlineare Optimierung.- 13. Dynamische Optimierung.- 14. Graphentheorie.- 15. Wahrscheinlichkeitsrechnung.- Sachwortverzeichnis.